
65

At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY

ISSN: 2708-521X

Analysis of Tools for Measuring PostgreSQL Query Cost

Raghavi Shirur1, Vedang Joshi2

1,2 Department of Computer Engineering, Institute of Engineering & Technology, Devi Ahilya

Vishvavidyalaya, Indore, Madhya Pradesh, India. 452017

ABSTRACT: Amidst the realm of database management, the precise prediction of query execution time

holds paramount importance in the pursuit of performance optimization. This intricate endeavor hinges upon

intricate cost models yet is full of challenges owing to the intricacies of selectivity estimation and the

propensity for cost-modeling errors. In the domain of open-source databases, PostgreSQL emerges as a

standout contender, distinguished by its sophisticated cost models. Delving into the crux of this matter, the

present paper undertakes a comprehensive analysis utilizing a spectrum of tools such as EXPLAIN,

EXPLAIN ANALYZE, PgAdmin, Dalibo, and Depesz. Through these lenses, the challenges aforementioned

are meticulously dissected, revealing the nuanced landscape of query execution. Notably, PostgreSQL's

trajectory in addressing these challenges is meticulously showcased, illuminating its evolutionary journey.

The insights thus garnered extend their value to the intricacies of query optimization, where the judicious

selection of query cost tools plays a pivotal role. By bridging theory and practice, this exposition contributes

to refining database systems, equipping practitioners and researchers with invaluable knowledge for

enhancing efficiency and proficiency.

Keywords: PostgreSQL, Database query, EXPLAIN, EXPLAIN ANALYSE, PgAdmin, Dalibo, Depesz.

Ethics Declaration

The authors declare no competing interests that could be perceived as influencing the research, analysis, or

interpretation of the findings presented in this paper. This work was conducted with utmost integrity and

objectivity, and there are no affiliations, or financial arrangements that might have biased the outcomes or

the reporting of the results. The authors have complied with the guidelines provided in "Competing

Interests and Funding" to ensure transparency and to provide readers with a clear understanding of

potential influences on the research presented herein.

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

INTRODUCTION
The intricate operational dynamics underlying the PostgreSQL query execution mechanism [13] exhibit

complexity; nonetheless, an exhaustive comprehension thereof assumes pivotal significance in harnessing the

complete potential of the database. Every executed query entails a meticulously orchestrated determination of a

detail-oriented charted plan, denoted as the Query Plan, which in turn empowers PostgreSQL to adeptly identify

the sought-after values. This iterative process of enhancement is denoted as the Query Cost optimization,

thereby ensconcing the assurance of paramount efficiency and optimal performance.

The basic concepts for PostgreSQL query cost measurement [1] are explained in the following section.

Plan Structure: A query plan is structured as a tree composed of nodes. Each node possesses a specific type and

can have multiple child nodes depending on its type. Although each node type may exhibit different behaviors,

the fundamental mechanism remains consistent: a parent node retrieves data from its child nodes row by row.

The child nodes can either generate data directly, such as by reading from tables, or retrieve data from their own

child nodes.

The need for Query Cost [13] is to optimize our database's performance in terms of CPU consumption and disk

I/O, it is essential to consider the metric of query cost. The query cost provides valuable information on the

efficiency of our database operations. This cost is primarily influenced by the query planning process, which

involves determining the most effective arrangement of plan nodes to execute the query. By carefully managing

the query planning stage, we can achieve better performance [1] and maximize the capabilities of our database.

Query Planning: Planning [2] determines the best arrangement of plan nodes for executing our query and

depends on several factors.

66

At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY

ISSN: 2708-521X

● The intended meaning of our query: The query plan [3] must accurately retrieve the specific rows

requested by our query. However, it's important to note that if multiple valid results fulfill the query's

semantics, we may receive different rows each time. This is why we cannot rely on a simple "SELECT

* FROM <table_name> LIMIT 1" without specifying an "ORDER BY" clause.

● The availability of indexes: Indexes can significantly enhance the efficiency of data retrieval in

Postgres. To optimize performance, it is crucial to understand query execution and maintain appropriate

indexes for the schema and query workload.

● The current configuration settings: The planner cost constants and resource consumption settings can

be dynamically configured on a per-database, per-user, per-session, or even per-query basis.

Understanding and adjusting these settings appropriately can impact query execution and overall

performance.

● The data statistics gathered by Postgres: Postgres collects statistics about our data through manual

execution of the ANALYZE command or automatic vacuum processes. These statistics play a vital role

in query optimization by providing insights into the data distribution and allowing the planner to make

informed decisions during query execution.

To develop a plan, Postgres inspects our query and evaluates based on the alternatives given above. It estimates

[14] a cost for each leaf node and propagates those costs up the tree to calculate costs for internal nodes and

eventually the root. It considers several plans and picks the cheapest based on cost settings, available indexes,

and heuristics based on collected database statistics. We’ll look at some tools that will enable us to have a clear

idea of measuring query performance.

ANALYSIS OF TOOLS
The present paper throws light on the comprehensive evaluation of five distinct tools:

● EXPLAIN

● EXPLAIN ANALYSE

● PgAdmin

● Dalibo

● Depesz

Every tool undergoes a thorough and methodical exposition, scrutiny, and evaluation, meticulously adhering to a

systematic, step-by-step methodology, complemented by illustrative instances. The foremost intent of this

undertaking is to impart a profound comprehension of the potentialities and constraints inherent in each tool.

This equips readers with the requisite knowledge to prudently deliberate when opting for the most pertinent tool

tailored to their distinct requisites. Via this exhaustive examination, our objective is to elucidate the distinctive

attributes and operational capacities inherent in each tool, thereby endowing users with the acumen to execute

judicious and effective selections aligned with their undertakings or obligations.

EXPLAIN

PostgreSQL provides a comprehensive mechanism to examine query planning and associated costs. The

EXPLAIN [4] command offers valuable benefits by presenting query costs and insights in a metric format. By

expressing your desired outcome to the database server, it takes on the responsibility of determining the most

efficient approach to deliver the requested results. In PostgreSQL, the planner utilizes the query structure, data

properties, and various other factors to generate a well-optimized plan for query execution.

This is demonstrated with a couple of examples. To use the EXPLAIN command, you tack on EXPLAIN before

the statement you want to run. This will return the estimated plan and cost, in plain text by default. We’ll run the

following queries and demystify all the sub-components of the returned output.

https://www.postgresql.org/docs/current/sql-explain.html

67

At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY

ISSN: 2708-521X

EXPLAIN (FORMAT JSON) SELECT * FROM operation;

Fig. 2.1.1 Postrgresql query output for the above command for operation table

EXPLAIN (FORMAT JSON) SELECT * FROM managedenvironment;

Fig. 2.1.2 Postrgresql query output for the above command in managedenvironment table

As previously mentioned, the query plan [5] structure consists of a tree composed of plan nodes. At the lowest

level of the tree are scan nodes responsible for retrieving raw rows from a table. Different types of scans exist

depending on the table access methods, including sequential scans, index scans, and bitmap index scans.

Additionally, non-table row sources like VALUES clauses and set-returning functions in the FROM clause have

their own scan node types. If the query involves operations such as joining, aggregation, sorting, or others on the

raw rows, additional nodes above the scan nodes are added to perform these operations. Similar to the scan

nodes, there can be multiple ways to execute these operations, resulting in different node types. The EXPLAIN

68

At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY

ISSN: 2708-521X

output provides a line for each node in the plan tree, displaying the node's basic type and the planner's cost

estimates for executing that particular node. Additional lines, indented from the node's summary line, may

appear to provide additional properties of the node. The first line, representing the summary of the topmost

node, displays the estimated total execution cost for the entire plan. This number serves as the planner's target to

minimize when generating the optimal plan.

Due to the absence of a WHERE clause in this query, it is necessary to scan all rows of the table. As a result, the

planner has opted for a straightforward sequential scan plan. The figures presented in parentheses provide the

following information from left to right:

● Estimated start-up cost: This refers to the time required before the output phase can commence. For

instance, it could involve the time needed for sorting in a sort node.

● Estimated total cost: This value is provided based on the assumption that the plan node will be

executed in its entirety, meaning that all available rows will be retrieved. However, it is important to

note that a node's parent node may choose to stop before reading all available rows, as exemplified in

the case of a LIMIT clause.

● Estimated number of rows output by this plan node: Again, this estimation assumes that the node will

be fully executed, resulting in the indicated number of output rows.

● The estimated average width of rows output by this plan node, measured in bytes: This metric

represents the anticipated average size of the rows produced by the plan node.

The costs assigned to query nodes are measured in arbitrary units defined by the planner's cost parameters.

Typically, these costs are based on disk page fetches, with seq_page_cost serving as the baseline unit (set to 1.0)

and other parameters adjusted relative to it. When examining query costs, the startup cost indicates the expense

incurred to initialize a node, while the total cost reflects the overall expense associated with that node. The

specific cost values are influenced by various factors such as seq_page_cost, cpu_tuple_cost, and other relevant

settings. It is worth noting that higher cost values indicate greater expense or complexity in executing the node.

The examples provided in this context assume default cost parameter values, but these can be customized to

reflect specific system configurations and requirements.

Understanding the cost of an upper-level node is crucial, as it encompasses the costs of all its child nodes.

However, it's important to note that the cost calculation only considers factors that are relevant to the planner.

Notably, it does not account for the time taken to transmit result rows to the client, which can impact the actual

elapsed time. This omission is deliberate since the planner cannot alter this aspect by modifying the plan. It's

worth emphasizing that every correct plan will yield the same set of rows as output.

The rows value requires some clarification as it does not represent the number of rows processed or scanned by

the plan node. Instead, it indicates the number of rows emitted by the node. This value is often lower than the

number scanned due to filtering based on WHERE-clause conditions applied at the node. Ideally, the estimate

for the top-level rows should approximate the actual number of rows returned, updated, or deleted by the query.

Conclusion: The EXPLAIN command provides a concise and efficient means to obtain query cost information.

It serves as an effective tool when seeking cost details without excessive visuals or unnecessary intricacies.

While the command provides estimated costs based on statistics, it's important to acknowledge that the actual

costs may differ in practice.

EXPLAIN ANALYZE

The EXPLAIN ANALYZE command offers an expanded version of the EXPLAIN command. It not only

provides the estimated plan and statistics but also executes the query and presents the actual runtime statistics.

By contrast, when using EXPLAIN alone, PostgreSQL does not execute the query but instead generates an

estimated execution plan based on available statistics. Consequently, there can be significant variations between

the estimated plan and the actual plan. Thankfully, PostgreSQL allows us to execute the query by utilizing

EXPLAIN ANALYZE instead of EXPLAIN. The usage of EXPLAIN ANALYZE is similar to EXPLAIN.

However, it's important to exercise caution when dealing with update or delete statements. In such cases, it

might be advisable to avoid using ANALYZE or consider encapsulating the entire statement within a transaction

that can be rolled back if needed. Below are some examples to understand its difference from EXPLAIN.

69

At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY

ISSN: 2708-521X

Fig. 2.2.1 EXPLAIN ANALYZE command output on managedenvironment table

We can add buffers to EXPLAIN ANALYZE, it will also give us information about the number of rows

removed by a filter, the number of buffers used, and more:

Fig. 2.2.2 EXPLAIN ANALYZE command output with buffers option on managedenvironment table

Fig 2.2.3 An intricate and complex query output

Every query plan consists of nodes. Nodes can be nested, and are executed from the inside out. This means that

the innermost node is executed before the outer node. This can be best thought of as nested function calls,

returning their results as they unwind.

● The structure of the execution plan [5] is represented by indented statements denoted by an →,

indicating child nodes of the outer/parent node. This hierarchical tree structure demonstrates the

presence of multiple steps or levels in the execution plan.

● When utilizing the ANALYZE option, we gain insights into the time taken to generate the query plan

and execute the query itself (excluding planning time).

● Estimated statistics are derived from the query plan and are presented within the first set of parentheses

on each node line or summary. The topmost or root node provides overall totals, including those from

its child nodes. Each child node or step has its own statistics, which may also include child nodes. The

cost estimate does not have specific units and should not be interpreted in terms of time or any

particular resources. Additionally, the plan provides an estimated count of rows that will be returned or

match the given condition.

70

At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY

ISSN: 2708-521X

By utilizing ANALYZE, we obtain a second set of parentheses that provide actual run statistics. These statistics

include the actual time spent (in milliseconds) within a specific node and the count of rows returned.

Furthermore, loops can indicate if a particular node was executed multiple times.

Fig 2.2.4 Nodes are indicated using a -> followed by the type of node taken

Here the first node executed is Seq scan on pg_database d. The Filter: is an additional filter applied to the results

of the node.

The format of the costs field is as follows:

STARTUP COST..TOTAL COST

Each node in a plan has a set of associated statistics [Fig 2.2.5], such as the cost, the number of rows produced,

the number of loops performed, and more. For example:

Fig 2.2.5 Query execution to demonstrate associated statistics

When using EXPLAIN ANALYZE, these statistics will also include the actual time (in milliseconds) spent, and

other runtime statistics (for example, the actual number of produced rows). Using EXPLAIN (ANALYZE,

BUFFERS) will also give us information about the number of rows removed by a filter, the number of buffers

used, and more.

It should be noted that some statistics are per-loop averages, while others are total values:

71

At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY

ISSN: 2708-521X

Fig 2.2.6 Field Names depicting different Value Types

Conclusion: Explain Analyze provides detailed insights based on actual query execution, unlike the Explain

command which relies on statistics. However, caution should be exercised when using this command as it

executes the query itself. Explain Analyze also provides information about the involved nodes in query

execution and allows for comparison between actual and estimated values, which can help identify unexpected

behaviors.

PgAdmin

PgAdmin [8] holds a prominent position as a widely embraced graphical user interface (GUI) tool dedicated to

the proficient administration of PostgreSQL databases. This tool stands distinguished for its comprehensive

array of functionalities, effectively catering to all essential PostgreSQL operations. The tool's interactive

dashboard serves as a centralized hub of information and functional tools, facilitating users in the seamless and

efficient management of their databases. Within this holistic dashboard, a wealth of details and options are made

available, enabling users to delve into the intricacies of their databases. Each component within PgAdmin

contributes to a cohesive ecosystem of database oversight, where users can glean insights into the purpose of

every facet. The tool's utility extends beyond its encompassing dashboard. PgAdmin empowers users by

enabling a spectrum of tasks, ranging from fundamental database management to the nuanced execution of

queries and the fine-tuning of server configurations. The software serves as a pivotal bridge between users and

PostgreSQL databases, where actions are transformed into intuitive operations through a user-friendly interface.

In essence, PgAdmin stands as an indispensable tool in the PostgreSQL realm, harmonizing advanced

functionality with a user-centric design philosophy. This graphical interface eliminates barriers, democratizing

database management for both novice and experienced users. With its capability to accommodate a breadth of

tasks, PgAdmin emerges as a valuable asset for those seeking streamlined and effective interaction with their

PostgreSQL databases.

Graphs

● Server sessions or Database sessions: The Server sessions or Database sessions graph displays the

connections to the server or database. It shows the total, active, and idle sessions for the server or

database.

72

At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY

ISSN: 2708-521X

 Fig. 2.3.1.1 Graphical representation of Database sessions

● Transactions per second: The Transactions per second graph shows the commits, rollbacks, and total

transactions per second that are taking place on the server or database.

Fig. 2.3.1.2 Graphical representation of Transactions per second

● Tuples in: The Tuples in the graph display the number of tuples inserted, updated, and deleted on the

server or database.

Fig. 2.3.1.3 Graphical representation of Tuples in

● Tuples out: The Tuples out graph displays the number of tuples fetched and returned from the server or

database.

73

At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY

ISSN: 2708-521X

Fig. 2.3.1.4 Graphical representation of Tuples out

● Block I/O: The Block I/O graph displays the number of blocks read from the filesystem or fetched from

the buffer cache (but not the operating system’s file system cache) for the server or database.

Fig. 2.3.1.5 Graphical representation of Block I/O

Server Activity

The Server activity panel displays information [9] about sessions, locks, prepared transactions, and server

configuration (if a server is selected in the browser tree). Use the Refresh button to update the information in the

table, and use the Search box to filter the results.

● Sessions: It shows all the active sessions for the selected Server or Database. Users can set the warning and

alert threshold value to highlight the long-running queries on the dashboard from Preferences.

74

At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY

ISSN: 2708-521X

Fig. 2.3.2.1 Server Activity Dashboard

To stop a session and remove it from the table, you can utilize the Terminate icon located in the first column.

The server will prompt you for confirmation before terminating the session. In the second column, you will find

the Cancel icon which allows you to terminate an active query without closing the session. The server will ask

for confirmation before canceling the query. When a query is canceled, the State column in the table will change

from Active to Idle. The session will remain in the table until it is terminated. For more detailed information

about a selected session, you can click on the Details icon in the third column. This will open the Details panel,

displaying additional session information.

Explain Analyze Visualizer

PgAdmin [10] offers an array of tools, including a prominent one within the Query Tool. Notably, the Explain

and Explain Analyze features play a vital role in this toolkit. These features process input queries from the

Query Editor and present outputs across three tabs, each with specific insights. The Explain and Explain Analyze

functionalities are pivotal in revealing the execution plan and performance details of a query. By utilizing these

tools, users gain a comprehensive understanding of how PostgreSQL interprets, optimizes, and executes queries.

The tab-based output organization enables users to systematically explore execution strategies, access methods,

and associated costs. This breakdown aids in comprehending resource usage and performance bottlenecks.

In essence, the integration of Explain and Explain Analyze in PgAdmin [10]'s Query Tool empowers users with

profound insights into query behavior. The structured output presentation reinforces the tool's role in

demystifying the intricate aspects of query execution in PostgreSQL.

Using the following query in the query space followed by opting Explain Analyze option

/*pga4dash*/

SELECT

 pid,

 datname,

 usename,

 application_name,

 client_addr,

 pg_catalog.to_char(backend_start, 'YYYY-MM-DD HH24:MI:SS TZ') AS backend_start,

 state,

 wait_event_type || ': ' || wait_event AS wait_event,

 pg_catalog.pg_blocking_pids(pid) AS blocking_pids,

75

At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY

ISSN: 2708-521X

 query,

 pg_catalog.to_char(state_change, 'YYYY-MM-DD HH24:MI:SS TZ') AS state_change,

 pg_catalog.to_char(query_start, 'YYYY-MM-DD HH24:MI:SS TZ') AS query_start,

 backend_type,

 CASE WHEN state = 'active' THEN ROUND((extract(epoch from now() - query_start) / 60)::numeric, 2)

ELSE 0 END AS active_since

FROM

 pg_catalog.pg_stat_activity

WHERE

 datname = (SELECT datname FROM pg_catalog.pg_database WHERE oid = 13445)ORDER BY pid

Fig 2.3.3.1 Graphical tab gives a visual representation of how the query is fetching the desired tuples

The Analysis tab in the tool displays the plan details in a tabular format. Each row corresponds to an Explain

Plan Node and contains various information such as node details, exclusive and inclusive timing, differences

between actual and planned rows, actual rows, planned rows, and loops [discussed in section 2.2]. By setting

Thresholds, we can determine when our query is not performing optimally and not retrieving values in the most

efficient manner.

76

At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY

ISSN: 2708-521X

Fig 2.3.3.2 Analysis tab metadata

The Statistics tab shows two tables: Statistics per Node Type and Statistics per Table/Relation. Both these tables

contain insights regarding the query that we execute [discussed in section 2.2].

Fig 2.3.3.2 Statistics tab metadata

Conclusion: PgAdmin serves as a popular and user-friendly dashboard for accessing database information. It

effectively presents data in a clear and comprehensible manner. The Query Tool facilitates visual interpretation

of query costs, while configurations can be adjusted as needed. The Analysis tab allows for highlighting triggers

and thresholds, the Graphical tab provides a query history view, and the dashboard Graphs offer valuable

insights into the database. Overall, PgAdmin is a valuable tool for database management.

DALIBO

The Explain command serves as a means to extract a query's execution plan, offering raw data. This

unprocessed information can be further utilized by inputting it, along with the query, into explain.dalibo.com

[11]. Notably, this tool takes on the task of meticulously dissecting the data, presenting it in a visually

comprehensible manner. The tool's capacity lies in delivering lucid and detailed insights, effectively unraveling

the complexities of the query's execution intricacies. Looking at the example used above we get :

[These can be directly accessed here]

Fig 2.4.1 Overview of the structure of query

https://explain.dalibo.com/plan/YQM9#plan

77

At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY

ISSN: 2708-521X

DALIBO's query plan provides a comprehensive visualization of PostgreSQL's query execution strategies. It

transforms raw Explain command output into a visually intuitive representation. This tool facilitates an

insightful understanding of query optimization, revealing access methods, join strategies, and cost evaluations.

DALIBO's query plan aids database professionals in deciphering and enhancing performance by presenting

intricate execution details in a user-friendly format.

Fig 2.4.2 Each card is clicked for detailed figures and structure

78

At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY

ISSN: 2708-521X

Fig 2.4.3 The Stats tab shows information in a tabular form

Conclusion: This web-based tool offers a valuable means of assessing query costs in a machine-independent

manner, as both the query plan and the query itself are manually input. Noteworthy for its thoroughness, the tool

meticulously furnishes comprehensive insights at each stage, table, and node of the query execution process.

The graphical chart representation serves as a portal to delve deeper into each card, revealing nuanced options

such as General, I/O Buffers, Output, Workers, and Miscellaneous. This capability empowers users to engage in

granular analysis, enabling a more profound understanding of query performance and facilitating well-informed

optimization strategies.

DEPESZ

This tool is a visualization tailored for the EXPLAIN ANALYZE command which is fed to -

explain.depesz.com [12]. Here too the query is put manually, and the query plan which is then represented with

colour gradations. It operates by accepting the query plan as manual input, subsequently translating it into a

graphical representation enriched with color gradations. A distinguishing feature is the option for users to log in,

enabling the logging of instances with enhanced clarity. By considering the example at hand, the intricacies of

query execution become more transparent, as the visualization effectively conveys the nuances of PostgreSQL's

query optimization process. This tool aligns with the aim of simplifying the comprehension of complex query

plans, thus facilitating informed decision-making in database optimization endeavors. The instances would be

registered clearly because a user has the option to log in. Looking at the example used here we get :

https://explain.depesz.com/
https://docs.google.com/document/d/11V2LAnJ0bliSfZ7DE1IqvwYwlwIxQBqp/edit#bookmark=id.30j0zll

79

At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY

ISSN: 2708-521X

[These can be directly accessed here]

Fig 2.5.1 depesz dashboard that provides visualization of query cost

The exclusive and inclusive columns are something that we can gain insights from. These two columns

predominantly mean:

● The exclusive column is the total amount of time PostgreSQL spent evaluating this node, without time

spent in its subnodes.

● The inclusive column is just like the exclusive, but it doesn't exclude the time of subnodes. Hence the

top node’s time would be equivalent to the total time.

An example can be found here: exclusive and inclusive.

These columns can also be configured for PgAdmin. Furthermore, the Stats tab shows:

https://explain.depesz.com/s/aNjl#html
https://explain.depesz.com/help#col-exclusive
https://explain.depesz.com/help#col-inclusive

80

At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY

ISSN: 2708-521X

Fig 2.4.3 The Stats tab shows information per node and per table

Fig 2.4.4 Colour chart inference table

Conclusion: This tool merges the features of Dalibo and PgAdmin to create a comprehensive dashboard. It

offers enhanced visibility by highlighting each node in the exclusive and inclusive columns, allowing for easy

identification of query cost anomalies. Additional optimizations can be implemented, and it provides the ability

to compare with previous query plans. Overall, this tool provides a robust platform for analyzing and optimizing

query performance.

CONCLUSION
This paper has undertaken a comprehensive analysis of tools for measuring PostgreSQL query cost, shedding

light on the intricacies of query execution and optimization. Through the utilization of tools such as EXPLAIN,

EXPLAIN ANALYSE, PgAdmin, Dalibo, and Depesz, the challenges and nuances associated with query

performance have been dissected and explored. The trajectory of PostgreSQL in addressing these challenges has

been meticulously showcased, illuminating its journey of evolution. The insights derived from this analysis hold

immense value for practitioners and researchers alike in the realm of database systems.

The study commenced by emphasizing the paramount importance of precise query execution time prediction in

database management. This task hinges upon intricate cost models, facing challenges related to selectivity

estimation and cost-modeling errors. The study then delved into the foundational concepts underlying

PostgreSQL query cost measurement, highlighting factors like plan structure, query planning, and the role of

indexes and data statistics in influencing query optimization.

81

At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY

ISSN: 2708-521X

Subsequently, the paper explored a range of tools for query cost analysis, starting with the EXPLAIN command.

It elucidated how EXPLAIN offers insight into query planning and associated costs, aiding in the determination

of the most efficient approach for delivering query results. The paper discussed the format of costs, the role of

cost constants, and their influence on query execution decisions.

The EXPLAIN ANALYZE tool was introduced, offering an expanded version of EXPLAIN that executes the

query and provides actual runtime statistics. The paper detailed how EXPLAIN ANALYZE aids in

understanding query performance through actual execution insights, including time spent, rows returned, and

loops performed.

The analysis extended to GUI tools like PgAdmin, highlighting its user-centric design and versatility in database

management. The various graphical representations, graphs, and panels within PgAdmin were explored to

illustrate its efficacy in presenting information about server sessions, transactions, tuples, and I/O operations.

The Explain Analyze Visualizer within PgAdmin was discussed as a vital tool for query plan visualization and

analysis.

The study then shifted its focus to external tools such as Dalibo and Depesz. Dalibo was showcased as a

platform for transforming raw EXPLAIN command output into visually intuitive representations, aiding in

deciphering query execution strategies and optimization. Depesz was introduced as a comprehensive tool that

combines features of both Dalibo and PgAdmin, providing a robust platform for analyzing and optimizing query

performance through visualizations and color-coded representations.

In conclusion, this analysis aims to provide a comprehensive overview of tools for measuring PostgreSQL query

cost. The paper's systematic approach offers valuable insights into the intricate world of query execution and

optimization, equipping practitioners and researchers with essential knowledge for enhancing database system

efficiency and proficiency. The adoption of various tools in this study has bridged the gap between theory and

practice, contributing to the refinement of database systems and fostering an environment of informed decision-

making in query optimization endeavors.

REFERENCES
1. Nilesh Jayanandana (2021), PostgreSQL Monitoring: The Best Tools and Key Metrics to Help Improve

Database Performance, sematext, https://sematext.com/blog/postgresql-monitoring/

2. PostgreSQL v15 (2023), Chapter 15. Parallel Query, Part II. The SQL Language, PostgreSQL Official

Documentation, https://www.postgresql.org/docs/current/parallel-query.html

3. Lawrence Jones (2022), Debugging the Postgres query planner, GoCardless,

https://gocardless.com/blog/debugging-the-postgres-query-planner/

4. Using EXPLAIN, PostgreSQL Wiki, https://wiki.postgresql.org/wiki/Using_EXPLAIN

5. Minh Nguyen (2021), How to read PostgreSQL query plan, Medium, Geek Culture

https://medium.com/geekculture/how-to-read-postgresql-query-plan-df4b158781a1

6. PostgreSQL v15 (2023), F.32. pg_stat_statements, Appendix F. Additional Supplied Modules, PostgreSQL

Official Documentation, https://www.postgresql.org/docs/current/pgstatstatements.html

7. Hans-Jürgen Schönig (2015), PG_STAT_STATEMENTS: THE WAY I LIKE IT, cybertec,

https://www.cybertec-postgresql.com/en/pg_stat_statements-the-way-i-like-it/

8. Developer Tools, pgAdmin 4, pgAdmin Official Documentation,

https://www.pgadmin.org/docs/pgadmin4/latest/developer_tools.html

9. PostgreSQL 15, 14.2. Statistics Used by the Planner, Chapter 14. Performance Tips, PostgreSQL Official

Documentation, https://www.postgresql.org/docs/current/planner-stats.html

10. Configuring pgadmin and Postgres, Tutorials, Database Labs,

https://www.databaselabs.io/help/tutorials/configuring-pgadmin-postgres

11. Dalibo Official website, explain.dalibo.com PostgreSQL execution plan visualizer,

https://explain.dalibo.com/

12. Despesz Official website, explain.depesz.com, PostgreSQL explain analyse made readable,

https://explain.depesz.com/

13. S. Currim, R. T. Snodgrass, Y-K. Suh, R. Zhang, M. W. Johnson, and C. Yi. “Dbms metrology: Measuring

query time”. SIGMOD, 2013.

14. W. Wu, S. Zhu Y. Chi, J. Tatemura, H. Hacig¨um¨u¸s, and J.F. Naughton. “Predicting query execution time:

Are optimizer cost models really unusable?” ICDE, 2013.

https://sematext.com/blog/postgresql-monitoring/
https://www.postgresql.org/docs/current/parallel-query.html
https://gocardless.com/blog/debugging-the-postgres-query-planner/
https://wiki.postgresql.org/wiki/Using_EXPLAIN
https://medium.com/geekculture/how-to-read-postgresql-query-plan-df4b158781a1
https://www.postgresql.org/docs/current/pgstatstatements.html
https://www.cybertec-postgresql.com/en/pg_stat_statements-the-way-i-like-it/
https://www.pgadmin.org/docs/pgadmin4/latest/developer_tools.html
https://www.postgresql.org/docs/current/planner-stats.html
https://www.databaselabs.io/help/tutorials/configuring-pgadmin-postgres
https://explain.dalibo.com/
https://explain.depesz.com/

