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ABSTRACT: In this paper, we deals with the general concept of ε- open set in the cluster topological space 

and also introduce the setε_p-open set in the cluster topological space.Also, we discuss the properties of εp – 

open sets in the cluster topological space. 
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INTRODUCTION 
Importance of cluster system in topological spaces by R.Thangamariappan and V Renukadevi [7]. In [3], a new class of sets 

was defined and discussed. More properties and characterization of 𝜀  sets are given in [3]. In this paper we define and study 

a new class of 𝜀p 
– open sets in cluster topological spaces. 

 

PRELIMINARIES 
Any nonempty system 𝜀 ⊂ 2𝑥 − {∅}will be called a cluster system in X. If any nonempty open subset of a nonempty open 

subset G contains a setfrom 𝜀, then 𝜀is called a 𝜋-network in G. For a cluster system 𝜀and a subset A of a space X, we define 

the set 𝜀 (A) of all points x ∈X such that for any neighborhood U of x, the intersection U ∩ A contains a set from 𝜀. A triplet 

(X,𝜏, 𝜀) is called a cluster topological space. We consider the cluster system with the property H. we have𝑐𝑙𝜀: 2𝑥 →
2𝑥defined by 𝑐𝑙𝜀 (A) =A ∪ 𝜀 (A) is a Kuratowski closure operator on 2𝑥.  We will denote by 𝜏 𝜀the topology generated by 

𝑐𝑙𝜀, called 𝜀 -topology, where 𝜏is the original topology on X, that is, 𝜏 𝜀= {A⊂X /𝑐𝑙𝜀(X - A) = X – A}. If 𝜀= 2𝑥 − {∅}or 𝜀= {x/ 

for every x ∈𝑋}, then 𝜀 (A) = 𝑐𝑙(𝐴). Hence in this case, 𝑐𝑙𝜀 = 𝑐𝑙(𝐴)= 𝑐𝑙(𝐴) and 𝜏 𝜀= 𝜏. 

 

Definition: 1.1 

 

A subset A of a cluster topological space (X, 𝜏, 𝜀) is said to be 

𝜀 − open, if A ⊂ 𝜀(𝐴) 

𝜀 − perfect, if 𝜀(𝐴) = 𝐴 

A is locally 𝜀 scattered if A∩𝜀(𝐴) = ∅ 

 

Lemma: 1.2 

 

(1) 𝜀 (∅) = ∅, 

(2) 𝜀 (A) is closed, 

(3) 𝜀 (A) ⊂ 𝐴̅, 

(4) if A1 ⊂A2, then 𝜀(A1) ⊂ 𝜀(A2), 

(5) 𝜀is a 𝜋 -network in an open set G ≠ ∅ iff 𝜀 (G) = 𝜀 (𝐺̅) = 𝐺̅. 

 

 

Theorem 1.3 

 

Let ((X, 𝜏) be a space with cluster systemsεand ε1on X, andlet A and B be subsets of X. Then the following hold, 

(a) 𝜀(𝜀(A)) ⊆  𝜀(A). 

(b) If 𝜀⊂𝜀1, then E(A)⊆ 𝜀1(A). 

(c) 𝜀(A) is closed, 𝜀(A) ⊂cl(A) and if A ⊂B, then 𝜀(A) ⊆  𝜀(B)  

(d) If U ∈𝜏 , then U ∩𝜀(A) = U ⊆ 𝜀(U ∩A). 

Theorem: 1.4 

Let (X, 𝜏,𝜀) be a space&A,B ⊂X. If 𝜀 is a cluster system 
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With the property H, then the following hold, 

(a) 𝜀(A ∪B) = 𝜀(A) ∪ 𝜀(B). 

(b) 𝜀(A) −𝜀(B) = 𝜀(A −B) −𝜀(B) ⊂ 𝜀(A −B). 

Theorem: 1.5 

Let (X,𝜏, 𝜀) be a space &A⊂X. If  𝜀 is a 𝜋-network in X, then 𝑐𝑙(𝑖𝑛𝑡{𝐴}) =  𝜀(𝐴), if every element of  𝜀 has 

nonempty interior. 

 

Theorem:1.6 

Let (𝑋, 𝜏, 𝜀) be a cluster topological space, 𝑐𝑙𝜉(𝐴) = 𝐴 ∪ 𝜉(𝐴)& 𝐴, 𝐵 ⊂ 𝑋 .then 

1.𝑐𝑙𝜀(𝜑) = 𝜑 

2.𝐴 ⊆ 𝑐𝑙𝜀(𝐴) 

3.𝑐𝑙𝜀(𝐴 ∪ 𝐵) = 𝑐𝑙𝜀(𝐴) ∪ 𝑐𝑙𝜀(𝐵) 

4.𝑐𝑙𝜀(𝐴) = 𝑐𝑙𝜀(𝑐𝑙𝜀(𝐴)). 

Proof: 

By lemma 1.2 we obtain 

1. 𝑐𝑙𝜀(𝜑) = 𝜑 ∪ 𝜀(𝜑) = 𝜑 

2. 𝐴 ⊆ 𝐴 ∪ 𝜀(𝐴) = 𝑐𝑙𝜀(𝐴) 

3.𝑐𝑙𝜀(𝐴 ∪ 𝐵) =  𝜀(A∪B) ∪ (A∪B) 

                      = (𝜀(𝐴) ∪  𝜀(𝐵)) ∪(A∪B) 

                      = (𝜀(𝐴) ∪ 𝐴) ∪ (𝜀(𝐵) ∪  𝐵) 

                      = 𝑐𝑙𝜀(𝐴) ∪ 𝑐𝑙𝜀(𝐵) 

4.𝑐𝑙𝜀(𝑐𝑙𝜀(𝐴)) = 𝑐𝑙𝜀(𝐴 ∪ 𝜀(𝐴)) 

 = 𝜀 (𝐴 ∪ 𝜀(𝐴)) ∪ (𝐴 ∪ 𝜀(𝐴)) 

 = (𝜀(𝐴) ∪ 𝐴) ∪ (𝜀(𝐴) ∪  𝐴) 

                                = (𝐴 ∪ 𝜀(𝐴) 

 =𝑐𝑙𝜀(𝐴). 

Theorem: 1.7 

Let (𝑋, 𝜏, 𝜀) be a 𝜀 –topology & A, B ⊂ 𝑋. Then  

If A⊂ 𝐵, then  𝑐𝑙𝜀(𝐴) ⊆ 𝑐𝑙𝜀(𝐵) 𝑐𝑙𝜀(𝐴 ∪ 𝐵) ⊆ 𝑐𝑙𝜀(𝐴) ∩ 𝑐𝑙𝜀(𝐵) 

If U is 𝜀 -open, then U ∩ 𝑐𝑙𝜀(𝐴) ⊆ 𝑐𝑙𝜀(U ∩ 𝐴) 

 

Proof: 

1. Since A⊆ 𝐵 by thrm 1.3 we have  

𝑐𝑙𝜀(𝐴) = 𝐴 ∪ 𝜀(𝐴) ⊆ 𝐵 ∪ 𝜀(𝐵) = 𝑐𝑙𝜀(𝐵) 

2. This is obvious. 

3. Since U is 𝜀-open, then  

We have U ∩ 𝑐𝑙𝜀(𝐴) =U∩ (𝐴 ∪ 𝜀(𝐴)) 

 = (U∩ 𝐴) ∪ (𝑈 ∩ 𝜀(𝐴) 

 ⊆ (𝑈 ∩ 𝐴) ∪ 𝜀(𝑈 ∩ 𝐴) 

 ⊆ 𝑐𝑙𝜀(U ∩ 𝐴). 

2. 𝛆- open sets  

 

Theorem: 2.1 

A singleton subset of a space (𝑋, 𝜏) is 𝜀 −  𝑜𝑝𝑒𝑛 iff it is open. 

Proof: 

     Let {𝑥} be a𝜀 − 𝑜𝑝𝑒𝑛 subset of X. 

       Then {𝑥} ⊂ 𝜀(𝐴) 
{𝑥} ⊂ 𝑐𝑙(𝑖𝑛𝑡{𝑥}) 

Since each singleton subset of any space 𝜀 − 𝑐𝑙𝑜𝑠𝑒𝑑 

Then 𝑐𝑙(𝑖𝑛𝑡{𝑥}) = 𝑖𝑛𝑡 {𝑥} 

  Thus {𝑥} ⊂ (𝑖𝑛𝑡{𝑥}) 

Hence {𝑥} open. 

 

Example: 2.2 

 

Let X = {𝑎, 𝑏, 𝑐}𝜏 = {∅, {𝑎, 𝑏}, 𝑋}𝜀 =  {{𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}, 𝑋}.Then 𝜀 is a cluster on the space(𝑋, 𝜏). Let 

A={𝑎, 𝑐}, 𝐵 = {𝑏, 𝑐}. Then 𝜀(𝐴) = 𝜀(𝐵).Thus A and B are 𝜀 open. But A∩ 𝐵 is not 𝜀 − 𝑜𝑝𝑒𝑛. 

 

Theorem:2.3 

 

        Let (𝑋, 𝜏) be space&𝜀 is 𝜋-network in X, if 𝐴 ⊂ 𝑋is 𝜀 − 𝑐𝑙𝑜𝑠𝑒𝑑, then A⊂ 𝑖𝑛𝑡 𝑐𝑙(𝐴) 

Proof: 

 Let A be a𝜀 − 𝑐𝑙𝑜𝑠𝑒𝑑 

⟹ X-A is 𝜀 − 𝑜𝑝𝑒𝑛 (𝐴 ⊂ 𝜀(𝐴)) 

⟹X-A⊂  𝜀(𝑋 − 𝐴) 
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⟹cl(int(X-A)) ⊂ X-A 

⟹  𝐴 ⊂ 𝑋 − 𝑐𝑙(𝑖𝑛𝑡(𝑋 − 𝐴)) 

⟹  A⊂ 𝑖𝑛𝑡(𝑐𝑙(𝐴)). 

𝟑. 𝜺p 
– open sets 

 

 

Definition:3.1 

 

A subset A of a cluster topological space  (𝑋, 𝜏, 𝜀)𝑖𝑠 𝑠𝑎𝑖𝑑 𝑡𝑜 𝑏𝑒 𝜀p 
– open if  𝐴 ⊂ 𝐼𝑛𝑡 (𝑐𝑙𝜀(𝐴)). 

      The complement of such set is called 𝜀p 
– closed.  The collection of all 𝜀p 

– open(res. 𝜀p –closed)subsets of X will be 

denoted by 𝜀p O(X)(resp. 𝜀p C(X)). 

Example: 3.2 

 

𝐴 = {𝑎, 𝑏), 𝑋 = {𝑎, 𝑏, 𝑐},  𝜏 = {𝑋, 𝜑, {𝑎}, {𝑏}, {𝑎 𝑏}} 

    𝜀 = {𝑋, {𝑎}, {𝑏}, {𝑐}, {𝑏, 𝑐}} 

    𝑐𝑙𝜀(𝐴) = {𝑎, 𝑏} 

𝐼𝑛𝑡 (𝑐𝑙𝜀(𝐴))= {𝑎, 𝑏} 

Therefore A is𝜀𝑝 −open. 

 

Example:3.3 

 

Let X = {𝑎, 𝑏, 𝑐, 𝑑}𝜏 = {∅, 𝑋, {𝑐}, {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑐, 𝑑}} 

𝜀 =  {𝑋, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}, {𝑏, 𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}} 

Then A = {𝑐} is a   𝜀𝑝 −open but which is not 𝜀 𝑜𝑝𝑒𝑛. 

 

Theorem: 3.4 

Let (𝑋, 𝜏) be space &𝜀 is 𝜋-network in X. Then 𝜀𝑝 − 𝑜𝑝𝑒𝑛 𝑖𝑓𝑓 𝐺 ∩ 𝐴 𝑖𝑠 𝜀𝑝 − 𝑜𝑝𝑒𝑛. 

Proof: 

      Let A be an 𝜀𝑝 − 𝑜𝑝𝑒𝑛 subset of X, let G⊂ 𝑋. 

   Then 𝐺 ∩ 𝐴 ⊆ 𝐺 ∩ 𝑖𝑛𝑡(𝑐𝑙𝜀(𝐴)) 

                       ⊆ 𝐼𝑛𝑡(𝐺 ∩ 𝑐𝑙𝜀(𝐴)) 

                          ⊆ 𝐼𝑛𝑡(𝑐𝑙𝜀(𝐺 ∩ 𝐴)) 

Hence  𝐺 ∩ 𝐴 𝑖𝑠 𝜀𝑝 − 𝑜𝑝𝑒𝑛. 

Proposition: 3.5 

Let A be a subset of a cluster topological space  (𝑋, 𝜏, 𝜀).Then 

𝐴 𝑖𝑠 𝜀𝑝 − 𝑜𝑝𝑒𝑛iff it is preopen. 

𝐴 𝑖𝑠 𝜀𝑝 − 𝑐𝑙𝑜𝑠𝑒𝑑𝑖𝑓𝑓 𝑖𝑡 𝑖𝑠 𝑠𝑒𝑚𝑖𝑜𝑝𝑒𝑛. 

Proof: 

If𝐴 𝑖𝑠 𝜀𝑝 − 𝑜𝑝𝑒𝑛 if and only if 𝐴 ⊆ 𝐼𝑛𝑡𝑐𝑙𝜀(𝐴) if and only if 𝐴 ⊆ 𝐼𝑛𝑡𝑐𝑙(𝐴) if and only if A is preopen. 

If A is 𝐴 𝑖𝑠 𝜀𝑝 − 𝑐𝑙𝑜𝑠𝑒𝑑 if and only if 𝑐𝑙𝜀(𝑖𝑛𝑡(A)) ⊂ 𝐴 if and only if cl(int(A))⊆ 𝐴 if and only if A is semiopen. 
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