

Several attributes of ϵp – Open Sets in Cluster Topological Space

Dr.M.Nazreen Banu, Dr.G.Suganthi, Dr.R.Punitha, Dr.R.Mohanapriya

Associate Professor Department of Mathematics Thassim Beevi Abdul Kader College for Women, Kilakarai -623 517 Ramanathapuram, Tamil Nadu, India.

Assistant Professor Department of Mathematics Sona College of Technology Salem -636 005 Tamil Nadu, India

Associate Professor & Head Department of Mathematics Thassim Beevi Abdul Kader College for Women, Kilakarai -623 517 Ramanathapuram, Tamil Nadu, India

Assistant Professor Department of Mathematics Sri Vinayaga Polytechnic College Krishnagiri, Tamil Nadu, India

ABSTRACT: In this paper, we deals with the general concept of ε - open set in the cluster topological space and also introduce the sets_p-open set in the cluster topological space. Also, we discuss the properties of εp – open sets in the cluster topological space.

Keywords: ε - open set, π -network, cluster and εp – open sets.

INTRODUCTION

Importance of cluster system in topological spaces by R.Thangamariappan and V Renukadevi [7]. In [3], a new class of sets was defined and discussed. More properties and characterization of ε sets are given in [3]. In this paper we define and study a new class of ε_p^- open sets in cluster topological spaces.

PRELIMINARIES

Any nonempty system $\varepsilon \subset 2^x - \{\emptyset\}$ will be called a cluster system in X. If any nonempty open subset of a nonempty open subset G contains a setfrom ε , then ε is called a π -network in G. For a cluster system ε and a subset A of a space X, we define the set ε (A) of all points $x \in X$ such that for any neighborhood U of x, the intersection U \cap A contains a set from ε . A triplet (X,τ, ε) is called a cluster topological space. We consider the cluster system with the property H. we have $cl_{\varepsilon}: 2^x \rightarrow 2^x$ defined by cl_{ε} (A) = A $\cup \varepsilon$ (A) is a Kuratowski closure operator on 2^x . We will denote by τ_{ε} the topology generated by cl_{ε} , called ε -topology, where τ is the original topology on X, that is, $\tau_{\varepsilon} = \{A \subset X/cl_{\varepsilon}(X - A) = X - A\}$. If $\varepsilon = 2^x - \{\emptyset\}$ or $\varepsilon = \{x/for every \ x \in X\}$, then ε (A) = cl(A). Hence in this case, $cl_{\varepsilon} = cl(A) = cl(A)$ and $\tau_{\varepsilon} = \tau$.

Definition: 1.1

A subset A of a cluster topological space (X, τ, ε) is said to be ε – open, if $A \subset \varepsilon(A)$ ε – perfect, if $\varepsilon(A) = A$ A is locally ε scattered if $A \cap \varepsilon(A) = \emptyset$

Lemma: 1.2

(1) ε (Ø) = Ø,
(2) ε (A) is closed,
(3) ε (A) ⊂ Ā,
(4) if A1 ⊂A2, then ε(A1) ⊂ ε(A2),
(5) ε is a π -network in an open set G ≠ Ø iff ε (G) = ε (Ḡ) = Ḡ.

Theorem 1.3

Let $((X, \tau)$ be a space with cluster systems ε_1 on X, andlet A and B be subsets of X. Then the following hold, (a) $\varepsilon(\varepsilon(A)) \subseteq \varepsilon(A)$. (b) If $\varepsilon \subset \varepsilon_1$, then $E(A) \subseteq \varepsilon_1(A)$. (c) $\varepsilon(A)$ is closed, $\varepsilon(A) \subset cl(A)$ and if $A \subset B$, then $\varepsilon(A) \subseteq \varepsilon(B)$ (d) If $U \in \tau$, then $U \cap \varepsilon(A) = U \subseteq \varepsilon(U \cap A)$. **Theorem: 1.4** Let (X, τ, ε) be a space & A, B $\subset X$. If ε is a cluster system

ATOMIC SPECTROSCOPY ISSN: 2708-521X With the property H, then the following hold,
(a) ε(A ∪B) = ε(A) ∪ ε(B).
(b) ε(A) -ε(B) = ε(A - B) -ε(B) ⊂ ε(A - B).
Theorem: 1.5
Let (X,τ,ε) be a space &A⊂X. If ε is a π-network in X, then cl(int{A}) = ε(A), if every element of ε has nonempty interior.

Theorem:1.6

Let (X, τ, ε) be a cluster topological space, $cl_{\xi}(A) = A \cup \xi(A) \& A, B \subset X$.then $1.cl_{\varepsilon}(\varphi) = \varphi$ $2.A\subseteq cl_{\varepsilon}(A)$ $3.cl_{\varepsilon}(A \cup B) = cl_{\varepsilon}(A) \cup cl_{\varepsilon}(B)$ $4.cl_{\varepsilon}(A) = cl_{\varepsilon}(cl_{\varepsilon}(A)).$ **Proof:** By lemma 1.2 we obtain $1.cl_{\varepsilon}(\varphi)=\varphi\cup\varepsilon(\varphi)=\varphi$ 2. $A \subseteq A \cup \varepsilon(A) = cl_{\varepsilon}(A)$ $3.cl_{\varepsilon}(A \cup B) = \varepsilon(A \cup B) \cup (A \cup B)$ $= (\varepsilon(A) \cup \varepsilon(B)) \cup (A \cup B)$ $= (\varepsilon(A) \cup A) \cup (\varepsilon(B) \cup B)$ $= cl_{\varepsilon}(A) \cup cl_{\varepsilon}(B)$ $4.cl_{\varepsilon}(cl_{\varepsilon}(A)) = cl_{\varepsilon}(A \cup \varepsilon(A))$ $= \varepsilon (A \cup \varepsilon(A)) \cup (A \cup \varepsilon(A))$ $= (\varepsilon(A) \cup A) \cup (\varepsilon(A) \cup A)$ $= (A \cup \varepsilon(A))$ $=cl_{\varepsilon}(A).$

Theorem: 1.7 Let (X, τ, ε) be a ε –topology & A, B $\subset X$. Then If $A \subset B$, then $cl_{\varepsilon}(A) \subseteq cl_{\varepsilon}(B) cl_{\varepsilon}(A \cup B) \subseteq cl_{\varepsilon}(A) \cap cl_{\varepsilon}(B)$ If U is ε -open, then $U \cap cl_{\varepsilon}(A) \subseteq cl_{\varepsilon}(U \cap A)$

Proof:

1. Since $A \subseteq B$ by thrm 1.3 we have $cl_{\varepsilon}(A) = A \cup \varepsilon(A) \subseteq B \cup \varepsilon(B) = cl_{\varepsilon}(B)$ 2. This is obvious. 3. Since U is ε -open, then We have $U \cap cl_{\varepsilon}(A) = U \cap (A \cup \varepsilon(A))$ $= (U \cap A) \cup (U \cap \varepsilon(A))$ $\subseteq (U \cap A) \cup \varepsilon(U \cap A)$ $\subseteq cl_{\varepsilon}(U \cap A).$

2. E- open sets

Theorem: 2.1 A singleton subset of a space (X, τ) is ε – open iff it is open. **Proof:** Let $\{x\}$ be $a\varepsilon$ – open subset of X. Then $\{x\} \subset \varepsilon(A)$ $\{x\} \subset cl(int\{x\})$ Since each singleton subset of any space ε – closed Then $cl(int\{x\}) = int \{x\}$ Thus $\{x\} \subset (int\{x\})$ Hence $\{x\}$ open.

Example: 2.2

Let $X = \{a, b, c\}\tau = \{\emptyset, \{a, b\}, X\}\varepsilon = \{\{a\}, \{b\}, \{a, c\}, \{a, c\}, \{b, c\}, X\}$. Then ε is a cluster on the space (X, τ) . Let $A=\{a, c\}, B = \{b, c\}$. Then $\varepsilon(A) = \varepsilon(B)$. Thus A and B are ε open. But $A \cap B$ is not $\varepsilon - open$.

Theorem:2.3

Let (X, τ) be space & ε is π -network in X, if $A \subset X$ is $\varepsilon - closed$, then $A \subset int cl(A)$ **Proof:** Let A be a $\varepsilon - closed$ \Rightarrow X-A is $\varepsilon - open (A \subset \varepsilon(A))$ \Rightarrow X-A $\subset \varepsilon(X - A)$

ATOMIC SPECTROSCOPY ISSN: 2708-521X $\Rightarrow cl(int(X-A)) \subset X-A$ $\Rightarrow A \subset X - cl(int(X - A))$ $\Rightarrow A \subset int(cl(A)).$ 3. ε_{P} open sets

Definition:3.1

A subset A of a cluster topological space (X, τ, ε) is said to be ε_p^- open if $A \subset Int(cl_{\varepsilon}(A))$. The complement of such set is called ε_p^- closed. The collection of all ε_p^- open(res. ε_p^- -closed) subsets of X will be denoted by $\varepsilon_p^- O(X)$ (resp. $\varepsilon_p^- C(X)$). Example: 3.2

 $A = \{a, b\}, X = \{a, b, c\}, \ \tau = \{X, \varphi, \{a\}, \{b\}, \{a b\}\}\$ $\varepsilon = \{X, \{a\}, \{b\}, \{c\}, \{b, c\}\}\$ $cl_{\varepsilon}(A) = \{a, b\}\$ $Int \ (cl_{\varepsilon}(A)) = \{a, b\}\$ Therefore A is ε_p - open.

Example:3.3

Let $X = \{a, b, c, d\}\tau = \{\emptyset, X, \{c\}, \{b, c\}, \{a, b, c\}, \{a, c, d\}\}$ $\varepsilon = \{X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{b, c, d\}, \{a, b, c\}\}$ Then $A = \{c\}$ is a ε_p -open but which is not ε open.

Theorem: 3.4

Let (X, τ) be space & ε is π -network in X. Then ε_p – open iff $G \cap A$ is ε_p – open. **Proof:**

Let A be an ε_p – open subset of X, let G $\subset X$.

Then $G \cap A \subseteq G \cap int(cl_{\varepsilon}(A))$

 $\subseteq Int(G \cap cl_{\varepsilon}(A))$

 $\subseteq Int(cl_{\varepsilon}(G \cap A))$

Hence $G \cap A$ is $\varepsilon_p - open$.

Proposition: 3.5

Let A be a subset of a cluster topological space (X, τ, ε) . Then

A is ε_p – openiff it is preopen.

A is ε_p – closediff it is semiopen.

Proof:

If *A* is ε_p – open if and only if $A \subseteq Intcl_{\varepsilon}(A)$ if and only if $A \subseteq Intcl(A)$ if and only if A is preopen.

If A is A is $\varepsilon_p - closed$ if and only if $cl_{\varepsilon}(int(A)) \subset A$ if and only if $cl_{(int(A))} \subseteq A$ if and only if A is semiopen.

REFERENCES

- 1. W.Al-Omeri, Mohd.SalmiMD.Noorani and A.Al-omari, a- Local function and its properties in ideal Topological spaces.
- Halgwrd M Darwesh, Between Preopen and open sets in Topological space, Thai ournal of Mathematics, volume 11 2013.
- 3. Milan Matejdes, on classification of sets in cluster topological space, International journal of pure and applied mathematics, volume 105 No 2,2015,269-280.
- 4. O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970.
- 5. V. Renukadevi, Relation between ideals and grills, J. Adv. Res. Pure Math. 2 (4) (2010).
- 6. B. Roy And M. N. Mukherjee, On A Typical Topology Induced By A Grill, Soochow Journal of Athematics Volume 33, No. 4, Pp. 771-786, October 2007.
- R.Thangamariappan and V.Renukadevi, Topology Generated By Cluster systems, Matematnhkm Bechnk 67, 3(2015), 174-184, September 2015.