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ABSTRACT: This study investigates the connection between Two-Factor Analyses of Variance (Two-way 

ANOVA) and multiple linear regression (MLR). This paper introduces straightforward instructions and a 

template for data transformation, making it an essential and mandatory step in constructing multiple linear 

regression models. The primary concept involves converting Two-way ANOVA into an applied linear model, 

providing a valuable framework for establishing a comprehensive connection between Two-way ANOVA and 

linear models. The step-by-step process required to fit the linear model is illustrated in this paper, along with 

a validation procedure using a Multilayer Feed-Forward Neural Network (MLFFNN). The application of a 

response surface plot aimed to elucidate the interplay between smoking and gender factors concerning uric 

acid characteristics. Two-way ANOVA and multiple linear regression (MLR) are interrelated; therefore, the 

multiple linear regression method is an alternate data analysis strategy. 

Keywords: Two-way ANOVA; linear model, Multilayer Feed-Forward Neural Network. 

 

INTRODUCTION 
Two-way analysis of Variance (ANOVA) is a statistical technique used to analyze the variance in a dataset when there are 

two independent categorical variables. When considering the perspective of a linear model, a Two-Way ANOVA can be 

interpreted as fitting a linear model to the data. Combining a multilayer feedforward neural network with linear regression 

(which derives from Two-Way Analysis of Variance) can offer several advantages in the context of predictive modeling. 

The data obtained from the study utilizing two-way analysis of variance will be transformed into linear regression in this 

work [11]. Prior to that, a comprehensive discussion will be provided on the Two-Way ANOVA Toward Linear Model and 

the Multilayer Feed-Forward Neural Network. 

 

TWO-WAY ANOVA TOWARD LINEAR MODEL 
Two-way ANOVA is an advanced statistical method that extends from one-way ANOVA. The two-way ANOVA method 

aims to compare the means of the response variable across different groups specified by the factor variable [6, 10, 11]. In 

1920, Sir Ronald Fisher developed Two-way ANOVA [9]. At the basic level, Two-way ANOVA can explain the nature of 

the statistical relation between the mean response and the level(s) of the predictor variable(s). Besides that, Two-way 

ANOVA provides a method of data analysis that is motivated by consideration of the DOE [5]. Two-way ANOVA can be 

extended to MLR by creating the independent variables and dependent variables [7]. Table 1 gives the template of Two-

Factor Analyses of Variance toward Linear Model. The Factor Effect of Two-Factor Analyses of Variance model for two-

factor studies is given in (1.1). 

 

                      ( ) ijkijjiijk εαββαμ..Y ++++=                                                   (1.1) 

where 

 
..μ  is a constant 
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iα  are constantly subject to the restriction 0α i =  

jβ  are constantly subject to the restriction 0β j =  

( ) ijαβ  constant subject to the restriction: 

  ( ) ( ) aib;j ,10αβ,10αβ
j

ij

i

ij  ====   

            ijkε  are independent ( )2σ0,N         n,kb,ja,i  1;1;1 ===  

 

In this present study, we developed the regression model for the uric acid example that is equivalent to the factor effects 

Two-Factor ANOVA model (1.1) by first defining the 1, -1, 0  indicator variables for the factor A and Factor B main effect 

as follows: 

 

Otherwise0

;Afactorfor3levelfromcasetheIf1

Afactorfor1levelfromcasetheIf1

−=1X

  
Otherwise0

Afactorfor3levelfromcasetheIf1

Afactorfor2levelfromcasetheIf1

−=2X

 

Otherwise0

Bfactorfor2levelfromcasetheIf1

Bfactorfor1levelfromcasetheIf1

−=3X

 
 

The multiple regression model that is the equivalent of the two-factor ANOVA model for the uric acid example therefore is:  

 

( ) ( ) ijkijk3ijk2ijk3ijk1ijk1ijk2ijkijk εXXαβXXαβXβXαXαμ..Y ++++++=
    

effectmainAB

2111

effectmainB

3

effectmainA

211
 

 

21,; 21,3;2,1, === kji  

where  

   
321 X,X,X  are indicator variables 

 

Here 1ijkX  denotes the value of indicator variable 
1X  for the k-th case from the treatment for which factor A is at the ith 

level and factor B is at the jth level, and 2ijkX  and 3ijkX  have corresponding meanings. 

 

MULTILAYER FEED-FORWARD NEURAL NETWORK (MLFFNN) 
 

In this study, MLFFNN is generally grouped into layers that are divided into input layers, hidden layers, and output layers. In 

this research, the output node is fixed at one since there is only one dependent variable [2, 3, and 4]. In MLFFNN the values

are given by                                             













+= 

=

H

1j

0jji whwgŶ where  an output weight from hidden node j 

to the output node is  the bias for the output node, g is an activation function. The values of the hidden node hj, j =1…H 

are given by 













+= 

=

H

1j

j0ijiij vxvgh . Here,  the output weight from input node i to hidden node j,  is the 

bias for hidden node j where j =1,…, H xi is the independent variables where i =1,…, N, and k is an activation function [8]. 

The general architecture of the MLFFNN model is illustrated in Figure 1. 
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Figure 1. The proposed architecture of the best (MLFFNN) model with five input variables, one hidden layer, and 

one output node 

 

Five selected variables, which as X1, X2, X3, X1X3, and X2X3 are treated as input for  MLFFNN. Therefore, the available data 

set was partitioned into a training set and a testing set with 60% and 40% of the available experimental measurements 

selected for the training and testing phases, respectively [2, 3, 4]. The computation node in MLFFNN is also stated to as the 

“hidden neuron of the hidden unit”, the function of the hidden neuron is to intervene between external input and network 

output. In an analysis having more hidden layers, the network is enabled to extract higher-ordered statistics [1, 9]. 

Theoretical works have shown that a single hidden layer is sufficient for MLFFNN to approximate any complex non-linear 

function [8]. Therefore, in this study, one-hidden-layer MLFFNN is proposed and tested with the selected case study. This 

conducted study initiates with a fitting to Multiple Linear Regression (MLR) toward Two-Factor ANOVA. Then, in the 

second phase, it proceeds with the  MLFFNN procedure. This is to obtain the mean square error for forecasting (MSE-F). 

The smallest error indicates the obtained model has high accuracy and supports the linear fitting model. 

 

Response surface plot (RSP) 

A surface plot is a visualization technique in three dimensions that illustrates the connection between two independent 

variables and a dependent variable. It presents a continuous surface where the height or color intensity corresponds to the 

value of the dependent variable at different combinations of the independent variables. Surface plots enable the visualization 

of intricate relationships and interactions among variables[6]. Typically, the two independent variables are represented on the 

X1 and X2 axes, while the dependent variable is displayed on the Y-axis.  

 

                               Y = f(X1, X2) +                                                                                     (3.1) 

 

The independent variables, X1, and X2, play a crucial role in determining the response variable, Y. The dependent variable, Y, 

is influenced by the values of X1 and X2, as well as the presence of an experimental error term denoted as ε. The error term ε 

captures various sources of variation, including measurement errors in the response variable and other factors not accounted 

for by the function f. In statistical terms, the error term ε is assumed to follow a normal distribution with a mean of zero and 

a variance of σ2. To obtain an accurate approximation for the function f, researchers typically begin by considering a low-

order polynomial within specific regions of interest. When the response can be represented by a linear relationship with the 

independent variables, a first-order model is employed [6]. 

 

THE STUDY DESIGN, SYNTAX, AND RESULTS. 
The output node in this study is one node that refers to one dependent variable (Y). To find the appropriate number of hidden 

nodes and the best combination of input variables, the model was constructed based on the proposed architecture of the best 

(MLFFNN), to ensure that this model fits the data. In our case, the best number of hidden nodes is one node. The 

architecture of the MLFFNN neural network model of Y is composed of five input variables, one hidden node, and one 

output node, as presented in Figure 1. The performance of MLFFNN was evaluated through sum square error for forecasting 

(MSE-F) and R2  which was obtained from the fitting model. Table 1 shows the sample data with A levels of factor A and B 

levels of factor B, and then each replicate contains all AB treatment combinations.  

 

2.1 The Tabulation of  Study Design Data 

A table containing the data layout for the two-factor analysis of variance was presented as Table 1. 
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Table 1. Sample Data on The Reading of Acid Uric and Notation For Two-Factor Study 

 

                                                                      Factor II: (Gender) 

 

 

 

 

Factor I : 

(Smoking 

Status) 

Factor A(i) Factor B (j) 

1B  
(Male)

 
2B  

(Female) 

A1:  

Status Smoker 
111Y = 550, 

112Y = 424 
121Y = 446, 

122Y = 440 

A2: 
 

Status  Ex-smoker 
211Y = 398, 

212Y = 387 
221Y = 367, 

222Y = 371 

A3: 
 

Status Non-smoker
 

311Y = 319, 312Y = 273 321Y = 233, 322Y = 262 

 

 

2.2 Transforming Data 

Table 2 indicates the template of the two-factor study before conducting the linear model analyses. The coding for the input 

was set at the standard level by defining the 1, -1, and 0  indicator variables for factor A and Factor B main effect. 

 

Table 2. Data Arrangement For The Regression Methodology Building 

(1) (2)    (3)     (4)      (5)           (6) 

i j k Y X1 X2 X3 X1X3 X2X3 

1 1 1 550 1 0  1  1  0 

1 1 2 424 1 0  1  1  0 

1 2 1 446 1 0 -1 -1  0 

1 2 2 440 1 0 -1 -1  0 

2 1 1 398 0 1  1  0  1 

2 1 2 387 0 1  1  0  1 

2 2 1 367 0 1 -1  0 -1 

2 2 2 371 0 1 -1  0 -1 

3 1 1 319 -1 -1  1 -1 -1 

3 1 2 273 -1 -1  1 -1 -1 

3 2 1 233 -1 -1 -1  1  1 

3 2 2 262 -1 -1 -1  1  1 

 

 

2.3 The Developed Syntax  

This section focuses on the methodology building using the R syntax. The full syntax of the methodology is given as 

follows. 

 

#STEP 1: Data input for the analysis 

Input =(" 

Y X1 X2 X3 X1X3 X2X3 

550 1 0 1 1 0  

424 1 0 1 1 0 

446 1 0 -1 -1 0 

440 1 0 -1 -1 0 

398 0 1 1 0 1 

387 0 1 1 0 1 

367 0 1 -1 0 -1 

371 0 1 -1 0 -1 

319 -1 -1 1 -1 -1 

273 -1 -1 1 -1 -1 

233 -1 -1 -1 1 1 

262 -1 -1 -1 1 1 

") 

data = read.table(textConnection(Input),header=TRUE) 

 

#################### Multiple Linear Regression ############################ 

STEP 2- Develop the regression model 

Regression_Model <- lm(Y~X1+X2+X3+X1X3+X2X3, data=data) 

summary(Regression_Model) 

 

###################MultiLayer Feedforward Neural Network################## 

#STEP 3-Install the Neuralnet Package 

if(!require(neuralnet)){install.packages("neuralnet")} 

library("neuralnet") 
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#STEP 4- Checking For the Missing Values/ 

apply(data, 2, function(x) sum(is.na(x))) 

 

#STEP 5 - Max-Min  Data Normalization/ 

normalize <- function(x) {return ((x - min(x)) / (max(x) - min(x)))} 

maxmindf <- as.data.frame(lapply(data, normalize)) 

 

#STEP 6-Determine the Training and Testing of the Dataset/ 

#/60% for Training and 40% For Testing/ 

Training <- maxmindf[1:10, ] 

Testing <- maxmindf[11:12, ] 

 

#STEP 7-Print Dataset -Training and Testing Data set/ 

print(Training) 

print(Testing ) 

 

#STEP 8-Plotting the Architecture of MLFFNN Neural Network/ 

nn <- neuralnet(Y~X1+X2+X3+X1X3+X2X3, data=Training, hidden=3,   

                linear.output = F, stepmax = 1000000) 

plot(nn) 

options(warn=-1) 

nn$result.matrix 

 

 

########Testing The Accuracy of The Model- Predicted Mean Square Error########## 

 

#STEP 9-Predicted Results are Compared To The Actual Results/. 

Temp_test <- subset(Testing, select = c("X1","X2","X3","X1X3","X2X3")) 

head(Temp_test) 

nn.results <- compute(nn, Temp_test) 

results <- data.frame(actual = Testing$Y, prediction = nn.results$net.result) 

results 

 

#STEP 10 Use The Predicted Mean Squared Error NN (MSE forecasts the Network) as a  

#Measure of How Far the Predictions Are From The Real Data/ 

predicted <- compute(nn,Testing[,1:5]) 

MSE.net <- sum((Testing$Y - predicted$net.result)^2)/nrow(Testing) 

 

#STEP 110-Printing the Mean Square Error Forecasting/ 

MSE.net 

 

####################################The End############################### 

 

2. 4  Results 

A summary of the findings from the illustrated case study is presented in this section. Table 3 displays the output of the 

model's parameter regression analysis. 

 

Table 3 Coefficients Table For Multiple Linear Regression 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t Sig. 

95% CI for B Collinearity Statistics 

B Std. Error Beta 
Lower 

Bound 

Upper 

Bound 
Tolerance VIF 

1 

(Constant) 372.50 11.49  32.42 0.00 344.39 400.61   

X1 92.50 16.25 0.88 5.69  0.00* 52.74 132.26 0.75 1.33 

X2 8.25 16.25 0.08 0.51 0.63 -31.51 48.01 0.75 1.33 

X3 19.33 11.49 0.22 1.68 0.14 -8.78 47.45 1.00 1.00 

X1X3 2.67 16.25 0.03 0.16 0.88 -37.09 42.42 0.75 1.33 

X2X3 -7.58 16.25 -0.07 -0.47 0.66 -47.34 32.17 0.75 1.33 

 Dependent Variable: Y;  Adjusted R2  0.894, ANOVA [F(5,6) = 10.094; p < 0.05] ;Note:  Significant    

  Levels: *p < 0.05; Normality assumptions were fulfilled; Multiple Linear Regression was applied. 

 

 
 

 

Table 3 gives the result of the linear model fitting with the interaction effect. The full model can be written with the 

interaction effect as given as follows: (1.2) 
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1 2 3 1 3 2 3
ˆ 372.50 92.50 8.25 19.33 2.67 7.58= + + + + −Y X X X X X X X

              
(1.2) 

 

Equation (1.2) stands out as the optimal model for representing the linear aspects of the two-way ANOVA. The acid uric 

level prediction can be derived using this particular equation (1.2). 

 

 
Figure 2. Multilayer Feed-Forward Neural Network (MLFFNN) and Multiple Linear Regression (MLR) 

 

Figures 3 through Figures 5 present the results of the response plot surface (RPS) analysis. This figure provides a summary 

of the surface plot for all of the possible inputs on the variables that are dependent. The properties of uric acid can be easily 

inferred from this graph. 

 

 
Figure 3. Contour plot of Y versus X1 and X2 

 

In Figure 3, the levels of uric acid are displayed for both current smokers (level 1) and former smokers (level 2). (level 2). 

Individuals who have a propensity for smoking were shown to have a greater level of uric acid, as indicated by the contour.  

In this particular instance, it was discovered that nonsmokers had lower levels of uric acid.  The area of the plot may be 

found in the lower-left corner of the plot. 
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Figure 4. Contour plot of Y versus X2 and X3 

 

Figure 4 displays the uric acid levels in ex-smokers (X2) considering the gender factor (X3). As indicated by the contour lines, 

male patients exhibit higher uric acid levels than female patients. However, no distinct pattern of uric acid is observed among 

ex-smokers in general. 

 

 
 

Figure 5. Contour plot of Y versus X1 and X3 

 

In Figure 5, the visualization presents the uric acid levels specifically within the cohort of individuals identified as smokers 

(level 1), taking into account the gender factor. The contour analysis within this context reveals a discernible trend where the 

uric acid levels are notably elevated in male patients as opposed to their female counterparts. 

 

CONCLUSION   
The primary purpose of this paper is to demonstrate two-factor analyses of variance (ANOVA) techniques that can be 

employed to explain such relationships through multiple linear regression. It has been shown that, from the design of the 

experiment (DOE) of two-factor analyses of variance (ANOVA), the multiple linear regressions can be well fit according to 

the template in Table 2. In the second phase of the study, all the independent variables in the regression model are further 

investigated by performing the MLFFNN procedure. The performance of MLFFNN was evaluated through the result of the 

sum square error and relative error of testing/out-sample. From the analysis conducted, it was found that only (X1) 

contributes significantly to the MLR model while (X2), (X3), (X1X3), and (X2X3) are not directly significant to MLR. In this 

case, the fitting of the regression model should comprise all the factor levels; therefore, this allows us to investigate the 

importance of the interaction effect between the factors. 
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