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ABSTRACT: Seismic data processing plays a pivotal role in modern exploration and characterization of 

subsurface reservoirs. Traditional methods often face challenges in handling large volumes of data and 

complex geological structures. Deep learning has emerged as a promising approach to address these 

challenges by leveraging its ability to automatically learn intricate patterns from data. In this paper, we 

explore the application of deep learning techniques for seismic data processing tasks, including seismic event 

detection, noise reduction, and seismic attribute analysis. We present a comprehensive review of recent 

advancements in this field, discussing various deep learning architectures such as convolutional neural 

networks (CNNs), recurrent neural networks (RNNs), and their combinations. Moreover, we highlight key 

challenges and future research directions, emphasizing the importance of robust training datasets, 

interpretability of models, and computational efficiency. By harnessing the power of deep learning, seismic 

data processing stands to benefit from enhanced accuracy, efficiency, and automation, ultimately advancing 

our understanding of subsurface structures and improving exploration outcomes 
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INTRODUCTION 
Seismic data processing plays a pivotal role in the exploration and production of hydrocarbons, offering crucial insights into 

the subsurface structures and reservoir characteristics. Traditional methods of seismic processing have long been the 

backbone of the oil and gas industry, providing valuable information for decision-making processes. However, with the 

advent of deep learning techniques, there has been a paradigm shift in how seismic data is processed and interpreted. Deep 

learning, a subset of artificial intelligence, has shown promising capabilities in handling complex seismic datasets and 

extracting meaningful information. This integration of deep learning into seismic data processing has opened up new 

avenues for enhanced reservoir characterization, improved imaging, and ultimately, more accurate resource assessments. In 

this comprehensive study, we delve into the applications, challenges, and advancements of utilizing deep learning in seismic 

data processing. 

 

The seismic data processing represents a significant advancement in the field, offering unprecedented opportunities to extract 

intricate geological features and patterns from seismic data. Unlike traditional processing techniques which rely heavily on 

manual interpretation and heuristic algorithms, deep learning models can automatically learn hierarchical representations of 

seismic data, enabling more accurate and efficient processing. By leveraging large volumes of labeled seismic data, deep 

learning algorithms can be trained to recognize subtle seismic signatures associated with different geological formations, 

fault structures, and fluid reservoirs. This ability to discern intricate patterns within seismic data holds immense potential for 

improving the quality of subsurface imaging and reservoir characterization, ultimately leading to better-informed decision-

making in exploration and production activities. 

 

However, despite the promise of deep learning, its integration into seismic data processing is not without challenges. One of 

the primary hurdles is the need for extensive labeled data for training deep learning models. Acquiring labeled seismic data 

can be both time-consuming and expensive, as it often requires manual interpretation by experienced geoscientists. 

Moreover, seismic data is inherently noisy and complex, posing additional challenges for deep learning algorithms. 

Addressing these challenges requires innovative approaches for data augmentation, transfer learning, and the development of 

specialized neural network architectures tailored to the unique characteristics of seismic data. Additionally, ensuring the 

robustness and interpretability of deep learning models remains a critical concern, particularly in safety-critical applications 

such as reservoir characterization and seismic hazard assessment. 



 

208   At. Spectrosc. 2023, 44(3) ATOMIC SPECTROSCOPY 

ISSN: 2708-521X 

 
Fig -1 

 

Deep learning-based approaches have demonstrated remarkable success in various tasks within seismic data processing, 

including seismic denoising, event detection, velocity modeling, and reservoir attribute estimation. Moreover, the ability of 

deep learning models to learn complex representations directly from data has led to the emergence of novel techniques such 

as seismic inversion and full-waveform inversion, enabling more accurate and detailed subsurface imaging. These 

advancements have the potential to revolutionize the way seismic data is processed, interpreted, and utilized in the oil and 

gas industry, paving the way for more efficient exploration and production workflows. 

 

LITERATURE REVIEW  
the foundational areas of research within this domain is seismic denoising, where deep learning algorithms are employed to 

remove noise and enhance the signal-to-noise ratio of seismic data. Early studies in this area focused on applying 

convolutional neural networks (CNNs) and autoencoders for denoising tasks, demonstrating superior performance compared 

to conventional filtering techniques. For instance, Liu et al. (2018) introduced a denoising autoencoder approach for seismic 

data, achieving significant improvements in signal clarity and interpretation accuracy. Subsequent works have explored 

advanced architectures such as generative adversarial networks (GANs) and variational autoencoders (VAEs) for more 

effective denoising and reconstruction of seismic data (Lu et al., 2020; Gao et al., 2021). 

 

Event detection and picking represent another crucial aspect of seismic data processing, essential for identifying seismic 

events such as earthquakes and micro seismicity. Deep learning-based approaches for event detection have demonstrated 

remarkable accuracy and efficiency, particularly in the presence of complex noise and signal variations. Zhang et al. (2019) 

proposed a convolutional recurrent neural network (CRNN) for automatic seismic phase picking, achieving high precision 

and recall rates compared to traditional methods. Similarly, Zhu et al. (2020) developed a deep learning framework based on 

long short-term memory (LSTM) networks for real-time seismic event detection, enabling rapid and accurate identification 

of seismic phases. 

 

Velocity modeling and migration are fundamental tasks in seismic imaging, critical for accurately mapping subsurface 

structures and reservoir geometries. Deep learning techniques have shown promise in improving the efficiency and accuracy 

of velocity analysis and migration algorithms. For example, Alaudah et al. (2019) introduced a deep learning-based approach 

for velocity analysis using a residual convolutional neural network (RCNN), achieving superior velocity model updates 

compared to conventional methods. Additionally, Wu et al. (2021) proposed a deep learning framework for seismic 

migration based on graph neural networks (GNNs), enabling more accurate imaging of complex subsurface structures. 

 

Reservoir characterization is another area where deep learning has made significant contributions, facilitating the estimation 

of reservoir properties and fluid distributions from seismic data. Deep learning-based reservoir attribute estimation 

techniques have been developed for tasks such as seismic facies classification, porosity prediction, and hydrocarbon 

detection. For instance, Sun et al. (2020) utilized deep convolutional neural networks (DCNNs) for automated seismic facies 

classification, achieving high accuracy in distinguishing different lithological units. Similarly, Khan et al. (2021) proposed a 

deep learning framework based on attention mechanisms for porosity prediction from seismic attributes, demonstrating 

improved predictive performance compared to conventional regression models. 

 

METHODOLOGY  
Data Preparation: 

Data Acquisition: Obtain seismic data from acquisition systems such as seismic surveys or well logs. Seismic data may 

include reflection seismic, refraction seismic, or borehole seismic data. 
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Preprocessing: Clean and preprocess the raw seismic data to remove noise, correct for acquisition effects, and enhance the 

signal quality. Preprocessing steps may include time-variant gain, deconvolution, filtering, and amplitude scaling. 

Labeling (if applicable): For supervised learning tasks such as seismic interpretation or event detection, annotate the seismic 

data with ground truth labels, which may include geological features, seismic events, or reservoir properties. 

Data Augmentation: Generate augmented training samples by applying transformations such as random shifts, rotations, and 

scaling to increase the diversity of the training dataset and improve the robustness of the deep learning model. 

Model Selection and Architecture Design: 

Selection of Deep Learning Architecture: Choose an appropriate deep learning architecture based on the specific task and 

characteristics of the seismic data. Common architectures for seismic data processing include convolutional neural networks 

(CNNs), recurrent neural networks (RNNs), and graph neural networks (GNNs). 

Customization of Architectures: Tailor the selected deep learning architecture to the characteristics of seismic data by 

adjusting parameters such as network depth, kernel size, stride, and activation functions. Consider incorporating domain-

specific knowledge and constraints into the model design. 

Integration of Pretrained Models (if applicable): Utilize pretrained deep learning models or transfer learning techniques to 

leverage knowledge from related tasks or domains, especially when labeled seismic data is limited. 

Training and Validation: 

Data Splitting: Divide the labeled seismic dataset into training, validation, and test sets to evaluate the performance of the 

deep learning model. Ensure that the distribution of seismic features and labels is representative across the different sets. 

Loss Function Selection: Choose an appropriate loss function tailored to the specific task, such as mean squared error (MSE) 

for regression tasks or categorical cross-entropy for classification tasks. 

Training Strategy: Select training parameters including learning rate, batch size, and optimization algorithm (e.g., stochastic 

gradient descent, Adam) to train the deep learning model. Monitor training progress using metrics such as loss function value 

and validation accuracy. 

Regularization and Dropout: Apply regularization techniques such as L1/L2 regularization or dropout to prevent overfitting 

and improve the generalization of the deep learning model. 

Hyperparameter Tuning: Fine-tune hyperparameters such as network architecture, learning rate, and dropout rate through 

cross-validation or grid search to optimize model performance. 

Post-processing: 

Thresholding and Filtering: Apply thresholding or filtering techniques to refine the output of the deep learning model and 

remove false positives or noise artifacts. 

Interpretation and Visualization: Interpret the predictions of the deep learning model in the context of the seismic 

interpretation task. Visualize the results using seismic attributes, amplitude maps, or classification labels to aid geological 

interpretation and decision-making. 

Integration with Existing Workflows: Integrate the deep learning-based results into existing seismic processing workflows or 

software platforms for further analysis and interpretation. 

 

APPLICATIONS OF DEEP LEARNING IN SEISMIC DATA PROCESSING 
Seismic Data Denoising and Deblurring: 

Deep learning algorithms such as convolutional neural networks (CNNs) and autoencoders are utilized for removing noise 

and enhancing the signal-to-noise ratio of seismic data. 

By learning complex patterns and features from large volumes of labeled seismic data, deep learning models can effectively 

denoise seismic traces and improve the clarity of subsurface structures. 

Seismic Data Interpolation and Reconstruction: 

Deep learning methods are employed to fill in missing or irregularly sampled seismic traces, enabling the reconstruction of 

complete seismic volumes. 

Techniques such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are used to learn spatial 

and temporal dependencies in seismic data and predict missing traces. 

Fault Detection and Seismic Interpretation: 

Deep learning models are applied for automatically detecting faults and fractures in seismic images, aiding in structural 

interpretation and reservoir characterization. 

Convolutional neural networks (CNNs) and semantic segmentation algorithms are utilized to classify seismic attributes and 

identify fault patterns with high accuracy and efficiency. 

Seismic Attribute Analysis: 

Deep learning techniques are employed for extracting and analyzing seismic attributes related to geological properties such 

as lithology, porosity, and fluid saturation. 

Models such as deep convolutional neural networks (DCNNs) and recurrent neural networks (RNNs) are trained to predict 

seismic attributes from raw seismic data, enabling quantitative reservoir characterization. 

Velocity Analysis and Time-Lapse Seismic Monitoring: 

Deep learning algorithms are utilized for velocity analysis, which is essential for accurate subsurface imaging and reservoir 

mapping. 

Techniques such as residual convolutional neural networks (RCNNs) and graph neural networks (GNNs) are employed to 

learn velocity models from seismic data and improve the accuracy of seismic imaging. 

Deep learning models are also applied for time-lapse seismic monitoring, enabling the detection of reservoir changes over 

time and the optimization of production strategies. 

Overall, the applications of deep learning in seismic data processing offer significant potential for improving the efficiency, 

accuracy, and interpretability of seismic interpretation and analysis workflows. By leveraging the capabilities of deep 
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learning algorithms to learn complex patterns and relationships from large-scale seismic datasets, researchers and 

practitioners can enhance their understanding of subsurface structures and reservoir properties, leading to more informed 

decision-making in the exploration and production of hydrocarbons. 

  

RESULT  
Improved Signal-to-Noise Ratio: Deep learning models can effectively denoise seismic data, enhancing the signal-to-noise 

ratio and improving the quality of subsurface images. This leads to more accurate interpretation of geological structures and 

potential hydrocarbon reservoirs. 

 

Automated Feature Extraction: Deep learning algorithms can automatically extract meaningful features from seismic data, 

reducing the need for manual interpretation and accelerating the processing workflow. This automation can lead to 

significant time savings and increased efficiency in exploration and production activities. 

 

Enhanced Imaging Resolution: By leveraging convolutional neural networks (CNNs) and other deep learning architectures, 

seismic imaging resolution can be greatly enhanced, allowing for better delineation of subsurface features and finer 

geological details. 

 

Fault Detection and Identification: Deep learning models can be trained to detect and classify faults, fractures, and other 

geological discontinuities in seismic data with high accuracy. This enables geoscientists and reservoir engineers to better 

understand reservoir geometry and structural complexity. 

 

Seismic Inversion and Attribute Analysis: Deep learning techniques can facilitate seismic inversion and attribute analysis, 

helping to derive valuable information about rock properties such as porosity, permeability, and fluid saturation. This 

information is crucial for reservoir characterization and optimal well placement. 

 

Uncertainty Quantification: Deep learning models can also be used to quantify uncertainties associated with seismic data 

interpretation and reservoir predictions. By incorporating probabilistic frameworks and Monte Carlo simulations, these 

models can provide more robust risk assessments for exploration and development decisions. 

 

Transfer Learning and Domain Adaptation: Deep learning approaches enable transfer learning and domain adaptation, 

allowing models trained on one dataset or geographic region to be fine-tuned for specific exploration targets or geological 

settings. This adaptability enhances the generalization capability of the models and makes them more versatile across 

different applications. 

 

CONCLUSION  
The deep learning models such as convolutional neural networks (CNNs) have demonstrated remarkable capabilities in 

feature extraction and pattern recognition, enabling more accurate seismic interpretation. By leveraging CNNs, we can 

effectively capture intricate spatial dependencies within seismic images, leading to enhanced reservoir characterization and 

seismic attribute analysis. 

 

Moreover, the integration of recurrent neural networks (RNNs) and attention mechanisms has facilitated the modeling of 

temporal dependencies in seismic data sequences. This enables the extraction of valuable temporal information, crucial for 

tasks such as seismic event detection and phase identification. 

 

Furthermore, the utilization of generative adversarial networks (GANs) has opened avenues for data augmentation and 

seismic image enhancement. By training GANs on limited seismic datasets, we can generate synthetic seismic images that 

closely mimic real data, thereby augmenting training data and improving model generalization. 

 

Additionally, the deployment of transfer learning techniques has proven effective in leveraging pre-trained deep learning 

models on large-scale datasets from related domains such as computer vision. By fine-tuning these models on seismic data, 

we can expedite model convergence and mitigate the challenges posed by limited labeled seismic datasets. 

 

However, despite the promising advancements, several challenges and opportunities for future research remain. These 

include addressing data scarcity issues, optimizing deep learning architectures for efficiency and scalability, and integrating 

domain knowledge into model training to enhance interpretability and reliability. 

 

In conclusion, the  represents a cutting-edge approach with transformative potential for the oil and gas industry. By 

harnessing the power of deep learning, we can unlock new insights into subsurface structures, optimize exploration and 

production strategies, and ultimately contribute to the sustainable development of energy resources. 
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